Enhances hole-injection, current and luminance efficiencies of OLEDs
DPVBi, 4,4 -bis(2,2 -diphenylvinyl)-1,1 -diphenyl, is a wide band gap small molecule semiconducting material, commonly used as a blue host-emitting material in OLEDs.
It has been reported that DPVBi can effectively manipulate the Schottky energy barrier between the ITO and the emitting layer, and thus significantly enhance hole-injection, current and luminance efficiencies of OLEDs, as well as their stability [1].
Enhanced Performance of Organic Light Emitting Device by Incorporating 4,4-Bis(2,2-diphenylvinyl)-1,1-Biphenyl as an Efficient Hole-Injection Nano-Layer, W. Yun et al., J. Nanosci. Nanotechnol., 13 (3), 2166-2170 (2013).
A white OLED based on DPVBi blue light emitting host and DCJTB red dopant, X. Zheng et al., Display, 24 (3), 121-124 (2003), doi:10.1016/j.displa.2003.09.004.
Highly efficient blue organic light-emitting diodes using dual emissive layers with host-dopant system, B. Lee et al., J. Photon. Energy. 3(1), 033598 (2013), doi:10.1117/1.JPE.3.033598.
Enhancing Color Purity and Stable Efficiency of White Organic Light Diodes by Using Hole-Blocking Layer, C-J. Huang et al., J. Nanomater., 915894, (2014),
Efficient white organic light-emitting diodes based on a balanced split of the exciton-recombination zone using a graded mixed layer as an electron-blocking layer, C. K. Kim et al., J. Soc. Info. Display, 18 (1), 97-102 (2012).
High efficient white organic light-emitting diodes using BCzVBi as blue fluorescent dopant, Y. Kim et al., J Nanosci. Nanotechnol., 8(9), 4579-83 (2008).
Color tunability in multilayer OLEDs based on DCM and DPVBi as emitting materials, P. Petrova et al., J. Phys.: Conference Series 514, 012015 (2014), doi:10.1088/1742-6596/514/1/012015.
White top-emitting organic light-emitting diodes using one-emissive layer of the DCJTB doped DPVBi layer, M. Kim et al., Thin Solid Films 516, 3590–3594 (2008); doi:10.1016/j.tsf.2007.08.078.